|
|
A006519
|
|
Highest power of 2 dividing n.
(Formerly M0162)
|
|
298
|
|
|
1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Least positive k such that m^k + 1 divides m^n + 1 (with fixed base m). - Vladimir Baltic, Mar 25 2002
To construct the sequence: start with 1, concatenate 1, 1 and double last term gives 1, 2. Concatenate those 2 terms, 1, 2, 1, 2 and double last term 1, 2, 1, 2 -> 1, 2, 1, 4. Concatenate those 4 terms: 1, 2, 1, 4, 1, 2, 1, 4 and double last term -> 1, 2, 1, 4, 1, 2, 1, 8, etc. - Benoit Cloitre, Dec 17 2002
a(n) = gcd(seq(binomial(2*n, 2*m+1)/2, m = 0 .. n - 1)) (odd numbered entries of even numbered rows of Pascal's triangle A007318 divided by 2), where gcd() denotes the greatest common divisor of a set of numbers. Due to the symmetry of the rows it suffices to consider m = 0 .. floor((n-1)/2). - Wolfdieter Lang, Jan 23 2004
Equals the continued fraction expansion of a constant x (cf. A100338) such that the continued fraction expansion of 2*x interleaves this sequence with 2's: contfrac(2*x) = [2; 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 8, 2, ...].
Simon Plouffe observes that this sequence and A003484 (Radon function) are very similar, the difference being all zeros except for every 16th term (see A101119 for nonzero differences). Dec 02 2004
This sequence arises when calculating the next odd number in a Collatz sequence: Next(x) = (3*x + 1) / A006519, or simply (3*x + 1) / BitAnd(3*x + 1, -3*x - 1). - Jim Caprioli, Feb 04 2005
a(n) = n if and only if n = 2^k. This sequence can be obtained by taking a(2^n) = 2^n in place of a(2^n) = n and using the same sequence building approach as in A001511. - Amarnath Murthy, Jul 08 2005
Least number k such that all coefficients of k*E(n, x), the n-th Euler polynomial, are integers (cf. A144845). - Peter Luschny, Nov 13 2009
In the binary expansion of n, delete everything left of the rightmost 1 bit. - Ralf Stephan, Aug 22 2013
Also the 2-adic value of 1/n, n >= 1. See the Mahler reference, definition on p. 7. This is a non-archimedean valuation. See Mahler, p. 10. Sometimes called 2-adic absolute value of 1/n. - Wolfdieter Lang, Jun 28 2014
First 2^(k-1) - 1 terms are also the heights of the successive rectangles and squares of width 2 that are adjacent to any of the four sides of the toothpick structure of A139250 after 2^k stages, with k >= 2. For example: if k = 5 the heights after 32 stages are [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1] respectively, the same as the first 15 terms of this sequence. - Omar E. Pol, Dec 29 2020
|
|
REFERENCES
|
Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
M. Beeler, R. W. Gosper and R. Schroeppel, Item 175, in Beeler, M., Gosper, R. W. and Schroeppel, R. HAKMEM. MIT AI Memo 239, Feb 29 1972.
Laurent Orseau, Levi H. S. Lelis, Tor Lattimore, and Théophane Weber, Single-Agent Policy Tree Search With Guarantees, arXiv:1811.10928 [cs.AI], 2018, also in Advances in Neural Information Processing Systems, 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
Eric Weisstein's World of Mathematics, Even Part.
|
|
FORMULA
|
a(n) = n AND -n (where "AND" is bitwise, and negative numbers are represented in two's complement in a suitable bit width). - Marc LeBrun, Sep 25 2000, clarified by Alonso del Arte, Mar 16 2020
Multiplicative with a(p^e) = p^e if p = 2; 1 if p > 2. - David W. Wilson, Aug 01 2001
G.f.: Sum_{k>=0} 2^k*x^2^k/(1 - x^2^(k+1)). - Ralf Stephan, May 06 2003
Dirichlet g.f.: zeta(s)*(2^s - 1)/(2^s - 2) = zeta(s)*(1-2^(-s)/(1 - 2*2^(-s)). - Ralf Stephan, Jun 17 2007
a(n) = (n XOR floor(n/2)) XOR (n-1 XOR floor((n-1)/2)) = n - (n AND n-1) (where "AND" is bitwise). - Gary Detlefs, Jun 12 2014
a(n) = (n-1) o n where 'o' is the bitwise converse nonimplication. 'o' is not commutative. n o (n+1) = A135481(n). - Peter Luschny, Oct 10 2019
(End)
Sum_{k=1..n} a(k) ~ (1/(2*log(2)))*n*log(n) + (3/4 + (gamma-1)/(2*log(2)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
|
|
EXAMPLE
|
2^3 divides 24, but 2^4 does not divide 24, so a(24) = 8.
2^0 divides 25, but 2^1 does not divide 25, so a(25) = 1.
2^1 divides 26, but 2^2 does not divide 26, so a(26) = 2.
Per Marc LeBrun's 2000 comment, a(n) can also be determined with bitwise operations in two's complement. For example, given n = 48, we see that n in binary in an 8-bit byte is 00110000 while -n is 11010000. Then 00110000 AND 11010000 = 00010000, which is 16 in decimal, and therefore a(48) = 16.
G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...
|
|
MAPLE
|
with(numtheory): for n from 1 to 200 do if n mod 2 = 1 then printf(`%d, `, 1) else printf(`%d, `, 2^ifactors(n)[2][1][2]) fi; od:
A006519 := proc(n) if type(n, 'odd') then 1 ; else for f in ifactors(n)[2] do if op(1, f) = 2 then return 2^op(2, f) ; end if; end do: end if; end proc: # R. J. Mathar, Oct 25 2010
|
|
MATHEMATICA
|
lowestOneBit[n_] := Block[{k = 0}, While[Mod[n, 2^k] == 0, k++]; 2^(k - 1)]; Table[lowestOneBit[n], {n, 102}] (* Robert G. Wilson v Nov 17 2004 *)
Table[BitAnd[BitNot[i - 1], i], {i, 1, 102}] (* Peter Luschny, Oct 10 2019 *)
|
|
PROG
|
(PARI) {a(n) = 2^valuation(n, 2)};
(PARI) a(n)=1<<valuation(n, 2); \\ Joerg Arndt, Jun 10 2011
(PARI) a(n)=direuler(p=2, n, if(p==2, 1/(1-2*X), 1/(1-X)))[n] \\ Ralf Stephan, Mar 27 2015
(Haskell)
import Data.Bits ((.&.))
a006519 n = n .&. (-n) :: Integer
(Scala) (1 to 128).map(Integer.lowestOneBit(_)) // Alonso del Arte, Mar 04 2020
(Julia)
using IntegerSequences
[EvenPart(n) for n in 1:102] |> println # Peter Luschny, Sep 25 2021
(Python)
|
|
CROSSREFS
|
This is Guy Steele's sequence GS(5, 2) (see A135416).
A059897 is used to express relationship between sequence terms.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|