login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055975
First differences of A003188 (decimal equivalent of the Gray Code).
10
1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, 16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, 32, 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, -16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, 64, 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, 16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, -32, 1, 2, -1, 4
OFFSET
1,2
COMMENTS
Multiplicative with a(2^e) = 2^e, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris, May 17 2005
a(A091072(n)) > 0; a(A091067(n)) < 0. - Reinhard Zumkeller, Apr 28 2012
In the binary representation of n, clear everything left of the least significant 1 bit, and negate if the bit left of it was set originally. - Ralf Stephan, Aug 23 2013
This sequence is the trace of n in the minimal alternating binary representation of n (defined at A256696). - Clark Kimberling, Apr 07 2015
FORMULA
a(2n) = 2a(n), a(2n+1) = (-1)^n. G.f. sum(k>=0, 2^k*t/(1+t^2), t=x^2^k). a(n) = 2^A007814(n) * (-1)^((n/2^A007814(n)-1)/2). - Ralf Stephan, Oct 29 2003
a((2*n-1)*2^p) = (-1)^(n+1)*2^p, p >= 0. - Johannes W. Meijer, Jan 27 2013
EXAMPLE
Since A003188 is 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, ...,
sequence begins 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, 4, ... .
MAPLE
nmax:=100: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (-1)^(n+1)*2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 27 2013
MATHEMATICA
f[n_]:=BitXor[n, Floor[n/2]]; Differences[Array[f, 120, 0]] (* Harvey P. Dale, Jul 18 2011, applying Robert G. Wilson v's program from A003188 *)
PROG
(PARI)
a(n)=((-1)^((n/2^valuation(n, 2)-1)/2)*2^valuation(n, 2)) \\ Ralf Stephan
(Haskell)
a055975 n = a003188 n - a003188 (n-1)
a055975_list = zipWith (-) (tail a003188_list) a003188_list
-- Reinhard Zumkeller, Apr 28 2012
(Python)
def A055975(n): return (n^(n>>1))-((n-1)^(n-1>>1)) # Chai Wah Wu, Jun 29 2022
CROSSREFS
Cf. A003188, A006519 (unsigned), A007814.
MASKTRANSi transform of A053644 (conjectural).
Sequence in context: A003484 A118827 A118830 * A006519 A356166 A327405
KEYWORD
easy,nice,sign,mult
AUTHOR
Alford Arnold, Jul 22 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Sep 05 2000
STATUS
approved