login
A055977
Numbers k such that Product_{q|k} p(q) divides p(k), where p(k) is number of unrestricted partitions of k and the product is over all distinct primes q that divide k.
2
1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 17, 19, 23, 29, 31, 37, 40, 41, 43, 47, 53, 59, 61, 64, 67, 71, 73, 75, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 180, 181, 189, 191, 193, 197, 199, 211, 223, 225, 227
OFFSET
1,2
LINKS
EXAMPLE
10 is included because p(10) = 42 is divisible by p(2)*p(5) = 2*7 and 2 and 5 are the distinct prime divisors of 10.
PROG
(Python)
from itertools import count, islice
from math import prod
from sympy.ntheory import npartitions, factorint
def a_gen():
for n in count(1):
if npartitions(n)%prod([npartitions(i) for i in factorint(n)]) < 1:
yield n
A055977_list = list(islice(a_gen(), 61)) # John Tyler Rascoe, Jul 24 2024
(PARI) isok(k) = my(f=factor(k)); numbpart(k) % prod(i=1, #f~, numbpart(f[i, 1])) == 0; \\ Michel Marcus, Jul 25 2024
CROSSREFS
Sequence in context: A047490 A357065 A039072 * A180221 A111292 A047373
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Jul 20 2000
EXTENSIONS
Name and offset edited by John Tyler Rascoe, Jul 24 2024
STATUS
approved