login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047490 Numbers that are congruent to {0, 1, 2, 3, 5, 7} mod 8. 1
0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 53, 55, 56, 57, 58, 59, 61, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 79, 80, 81, 82, 83, 85, 87, 88 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..67.

Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).

EXAMPLE

G.f.: x^2*(x^4+x^3+x^2+1)/((x-1)^2*(x^2-x+1)*(x^2+x+1)). [Colin Barker, Jun 22 2012]

From Wesley Ivan Hurt, Jun 16 2016: (Start)

a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.

a(n) = (24*n-30+6*sqrt(3)*cos((1-2n)*Pi/6)+2*sqrt(3)*cos((1+4n)*Pi/6))/18.

a(6k) = 8k-1, a(6k-1) = 8k-3, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)

MAPLE

A047490:=n->(24*n-30+6*sqrt(3)*cos((1-2*n)*Pi/6)+2*sqrt(3)*cos((1+4*n)*Pi/6))/18: seq(A047490(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016

MATHEMATICA

Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)

PROG

(MAGMA) [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 5, 7]]; // Wesley Ivan Hurt, Jun 16 2016

CROSSREFS

Sequence in context: A153088 A162535 A279814 * A039072 A055977 A180221

Adjacent sequences:  A047487 A047488 A047489 * A047491 A047492 A047493

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 05:15 EDT 2021. Contains 348160 sequences. (Running on oeis4.)