The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047549 Numbers that are congruent to {0, 1, 2, 3, 4, 7} mod 8. 1
 0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 87, 88 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1). FORMULA From Chai Wah Wu, May 29 2016: (Start) a(n) = a(n-1) + a(n-6) - a(n-7) for n>7. G.f.: x^2*(x^5 + 3*x^4 + x^3 + x^2 + x + 1)/(x^7 - x^6 - x + 1). (End) From Wesley Ivan Hurt, Jun 16 2016: (Start) a(n) = (24*n-33+3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)+12*sin((1+ 2*n)*Pi/6))/18. a(6k) = 8k-1, a(6k-1) = 8k-4, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End) MAPLE A047549:=n->(24*n-33+3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)+12*sin((1+ 2*n)*Pi/6))/18: seq(A047549(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016 MATHEMATICA LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *) PROG (MAGMA) [n : n in [0..100] | n mod 8 in [0..4] cat [7]]; // Wesley Ivan Hurt, May 29 2016 CROSSREFS Sequence in context: A039195 A039146 A039106 * A039074 A326966 A326784 Adjacent sequences:  A047546 A047547 A047548 * A047550 A047551 A047552 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 19:13 EST 2021. Contains 349596 sequences. (Running on oeis4.)