

A047549


Numbers that are congruent to {0, 1, 2, 3, 4, 7} mod 8.


1



0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 87, 88
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,1).


FORMULA

From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n1) + a(n6)  a(n7) for n>7.
G.f.: x^2*(x^5 + 3*x^4 + x^3 + x^2 + x + 1)/(x^7  x^6  x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (24*n33+3*cos(n*Pi)+4*sqrt(3)*cos((14*n)*Pi/6)+12*sin((1+
2*n)*Pi/6))/18.
a(6k) = 8k1, a(6k1) = 8k4, a(6k2) = 8k5, a(6k3) = 8k6, a(6k4) = 8k7, a(6k5) = 8k8. (End)


MAPLE

A047549:=n>(24*n33+3*cos(n*Pi)+4*sqrt(3)*cos((14*n)*Pi/6)+12*sin((1+
2*n)*Pi/6))/18: seq(A047549(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016


MATHEMATICA

LinearRecurrence[{1, 0, 0, 0, 0, 1, 1}, {0, 1, 2, 3, 4, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)


PROG

(MAGMA) [n : n in [0..100]  n mod 8 in [0..4] cat [7]]; // Wesley Ivan Hurt, May 29 2016


CROSSREFS

Sequence in context: A039195 A039146 A039106 * A039074 A326966 A326784
Adjacent sequences: A047546 A047547 A047548 * A047550 A047551 A047552


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


STATUS

approved



