|
|
A326966
|
|
BII-numbers of set-systems whose dual is a weak antichain.
|
|
13
|
|
|
0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16, 18, 25, 27, 30, 31, 32, 33, 42, 43, 45, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 64, 75, 76, 79, 82, 91, 94, 95, 97, 107, 109, 111, 115, 116, 117, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 135
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
|
|
LINKS
|
|
|
EXAMPLE
|
The sequence of all set-systems whose dual is a weak antichain together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
15: {{1},{2},{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
25: {{1},{3},{1,3}}
27: {{1},{2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
|
|
MATHEMATICA
|
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Select[Range[0, 100], stableQ[dual[bpe/@bpe[#]], SubsetQ]&]
|
|
CROSSREFS
|
Set-systems whose dual is a weak antichain are counted by A326968, with covering case A326970, unlabeled version A326971, and unlabeled covering version A326973.
BII-numbers of set-systems whose dual is strict (T_0) are A326947.
BII-numbers of set-systems whose dual is a (strict) antichain (T_1) are A326979.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|