login
A326963
Number of length n arrays with entries that cover an initial interval of positive integers counting chiral pairs as equivalent, i.e., the arrays are reversible.
2
1, 1, 2, 8, 39, 277, 2348, 23684, 272955, 3543901, 51124052, 811318628, 14045786139, 263429197837, 5320671508868, 115141595761844, 2657827341263595, 65185383518111581, 1692767331631966292, 46400793659715329348, 1338843898122243225339, 40562412499252848257197
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (k!/2) * (Stirling2(n, k) + Stirling2(ceiling(n/2), k)).
EXAMPLE
a(3) = 8 because there are the following arrays up to reversal:
111,
112, 121, 122, 212,
123, 132, 213.
PROG
(PARI) a(n) = {sum(k=0, n, k! * (stirling(n, k, 2) + stirling((n+1)\2, k, 2)) / 2)}
CROSSREFS
Row sums of A305621.
Sequence in context: A217945 A091073 A266468 * A306781 A154132 A152458
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 13 2019
STATUS
approved