login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326967
Number of sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.
5
2, 4, 10, 92, 38362, 4020654364, 18438434849260080818, 340282363593610212050791236025945013956, 115792089237316195072053288318104625957065868613454666314675263144628100544274
OFFSET
0,1
COMMENTS
Alternatively, these are sets of subsets of {1..n} whose dual is a (strict) antichain, also called T_1 sets of subsets. The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other.
FORMULA
a(n) = 2 * A326965(n).
Binomial transform of A326960.
EXAMPLE
The a(0) = 2 through a(2) = 10 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{},{1}}
{{},{2}}
{{1},{2}}
{{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
MATHEMATICA
tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]], Length[#]==1&]==Union@@eds;
Table[Length[Select[Subsets[Subsets[Range[n]]], tmQ[#]&]], {n, 0, 3}]
CROSSREFS
Sets of subsets are A001146.
The unlabeled version is A326951.
The covering version is A326960.
The case without empty edges is A326965.
Sets of subsets whose dual is a weak antichain are A326969.
Sequence in context: A090256 A270479 A126140 * A223851 A371621 A297364
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 10 2019
STATUS
approved