OFFSET
1,1
COMMENTS
The poly-Cauchy numbers c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..300
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
TTakao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
M. Z. Spivey, Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
Wikipedia, Stirling transform
FORMULA
Empirical g.f.: 2*x*(38*x^2-12*x+1) / ((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Mar 31 2013
MATHEMATICA
Table[Sum[StirlingS1[4, k] (k + 1)^n, {k, 0, 4}], {n, 25}]
PROG
(Magma) [&+[StirlingFirst(4, k)*(k+1)^n: k in [0..4]]: n in [1..25]]; // Bruno Berselli, Mar 28 2013
(PARI) a(n) = sum(k=0, 4, stirling(4, k, 1)*(k+1)^n); \\ Michel Marcus, Nov 14 2015
CROSSREFS
KEYWORD
sign
AUTHOR
Takao Komatsu, Mar 28 2013
STATUS
approved