login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223851
Poly-Cauchy numbers c_4^(-n).
2
2, 4, -10, -116, -538, -1316, 3110, 68044, 593702, 4117564, 25598630, 149298604, 835538342, 4545417244, 24232768550, 127291207564, 661279993382, 3406640457724, 17437000616870, 88808710210924, 450563930438822, 2278977841239004, 11499752014647590
OFFSET
1,1
COMMENTS
The poly-Cauchy numbers c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).
LINKS
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
TTakao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
M. Z. Spivey, Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
FORMULA
Empirical g.f.: 2*x*(38*x^2-12*x+1) / ((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Mar 31 2013
MATHEMATICA
Table[Sum[StirlingS1[4, k] (k + 1)^n, {k, 0, 4}], {n, 25}]
PROG
(Magma) [&+[StirlingFirst(4, k)*(k+1)^n: k in [0..4]]: n in [1..25]]; // Bruno Berselli, Mar 28 2013
(PARI) a(n) = sum(k=0, 4, stirling(4, k, 1)*(k+1)^n); \\ Michel Marcus, Nov 14 2015
CROSSREFS
Sequence in context: A270479 A126140 A326967 * A371621 A297364 A355203
KEYWORD
sign
AUTHOR
Takao Komatsu, Mar 28 2013
STATUS
approved