login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223852
Poly-Cauchy numbers c_5^(-n).
2
-6, -8, 48, 340, 984, -1148, -34152, -254780, -1250376, -3417788, 12508248, 296104900, 3122953464, 26485493572, 201873508248, 1443404093380, 9892106472504, 65798800964932, 428187502981848, 2740792716574660, 17321987718906744, 108394003491348292
OFFSET
1,1
COMMENTS
Definition of poly-Cauchy numbers in A222627.
LINKS
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
M. Z. Spivey, Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
FORMULA
a(n) = Sum_{k=0..5} Stirling1(5,k)*(k+1)^n.
Empirical g.f.: -2*x*(810*x^3 - 361*x^2 + 56*x - 3) / ((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, Mar 31 2013
MATHEMATICA
Table[Sum[StirlingS1[5, k] (k + 1)^n, {k, 0, 5}], {n, 25}]
PROG
(Magma) [&+[StirlingFirst(5, k)*(k+1)^n: k in [0..5]]: n in [1..25]]; // Bruno Berselli, Mar 28 2013
(PARI) a(n) = sum(k=0, 5, stirling(5, k, 1)*(k+1)^n); \\ Michel Marcus, Nov 14 2015
CROSSREFS
Sequence in context: A000380 A154153 A164640 * A227167 A192158 A167481
KEYWORD
sign
AUTHOR
Takao Komatsu, Mar 28 2013
STATUS
approved