login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222627
Poly-Cauchy numbers c_n^(-2) (for definition see Comments lines).
9
1, 4, 5, -3, 4, -8, 20, -52, 72, 936, -17568, 238752, -3113280, 41503680, -577877760, 8470414080, -131039838720, 2139954163200, -36854615347200, 668374040678400, -12742107588403200, 254904791591116800, -5341386032640000000, 117034910701793280000
OFFSET
0,2
COMMENTS
The definition of poly-Cauchy numbers is given in Theorem 1 of the paper Poly-Cauchy numbers (see Links lines).
The poly-Cauchy numbers c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).
LINKS
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
M. Z. Spivey, Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*(k+1)^2.
E.g.f.: (1 + x) * (1 + log(1 + x) * (3 + log(1 + x))). - Ilya Gutkovskiy, Aug 09 2021
MATHEMATICA
Table[Sum[StirlingS1[n, k]*(k + 1)^2, {k, 0, n}], {n, 0, 25}]
PROG
(Magma) [&+[StirlingFirst(n, k)*(k+1)^2: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^2); \\ Michel Marcus, Nov 14 2015
CROSSREFS
Cf. A006233.
Sequence in context: A212711 A069197 A021692 * A107793 A275275 A376180
KEYWORD
sign
AUTHOR
Takao Komatsu, Mar 28 2013
STATUS
approved