OFFSET
0,1
COMMENTS
Average value is 4.38095...
Conjecture (N. J. A. Sloane, Jun 22 2018) This is a disguised form of A275925. More precisely, if we replace the 5's by 6's and the 4's by 5's, and ignore the first two terms, we appear to get a sequence which is a shifted version of A275925.
MAPLE
# From N. J. A. Sloane, Jun 22 2018. The value 16 can be replaced (in two places) by any number congruent to 1 mod 3.
with(ListTools); S := Array(0..30);
psi:=proc(T) Flatten(subs( {1=[2], 2=[3], 3=[1, 2, 3]}, T)); end;
S[0]:=[1];
for n from 1 to 16 do S[n]:=psi(S[n-1]): od:
# Get differences between indices of 1's in S:
Bag:=proc(S) local i, a; global DIFF; a:=[];
for i from 1 to nops(S) do if S[i]=1 then a:=[op(a), i]; fi; od:
DIFF(a); end;
Bag(S[16]);
MATHEMATICA
s[1] = {2}; s[2] = {3}; s[3] = {1, 2, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] pp = p[13] a = Flatten[Table[If[pp[[j]] == 1, j, {}], {j, 1, Length[pp]}]] b = Table[a[[n]] - a[[n - 1]], {n, 2, Length[a]}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 11 2005
EXTENSIONS
Edited (and checked) by N. J. A. Sloane, Jun 21 2018 (the original version did not make it clear that this is based on only one of the three tribonacci sequences A305389, A305390, A305391).
STATUS
approved