This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196402 Decimal expansion of the least positive number x satisfying e^(-x)=2*cos(x). 6
 1, 4, 5, 3, 6, 7, 3, 6, 6, 6, 4, 6, 1, 0, 4, 1, 6, 1, 8, 6, 8, 4, 3, 4, 3, 5, 6, 8, 1, 2, 7, 3, 4, 0, 0, 6, 4, 4, 5, 9, 5, 8, 8, 0, 6, 1, 9, 2, 1, 7, 4, 2, 7, 6, 2, 5, 6, 3, 4, 2, 4, 5, 1, 1, 3, 4, 3, 4, 1, 5, 8, 0, 3, 6, 1, 6, 5, 2, 4, 5, 9, 9, 3, 9, 8, 5, 4, 6, 5, 2, 6, 4, 3, 0, 8, 0, 5, 7, 3, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE x=1.45367366646104161868434356812734006445958806... MATHEMATICA Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}] t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196401 *) t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196402 *) t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196403 *) t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196404 *) t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196405 *) t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196406 *) CROSSREFS Cf. A196401. Sequence in context: A222627 A107793 A275275 * A268741 A263031 A004493 Adjacent sequences:  A196399 A196400 A196401 * A196403 A196404 A196405 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 17:53 EST 2019. Contains 319349 sequences. (Running on oeis4.)