login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196402
Decimal expansion of the least positive number x satisfying e^(-x)=2*cos(x).
6
1, 4, 5, 3, 6, 7, 3, 6, 6, 6, 4, 6, 1, 0, 4, 1, 6, 1, 8, 6, 8, 4, 3, 4, 3, 5, 6, 8, 1, 2, 7, 3, 4, 0, 0, 6, 4, 4, 5, 9, 5, 8, 8, 0, 6, 1, 9, 2, 1, 7, 4, 2, 7, 6, 2, 5, 6, 3, 4, 2, 4, 5, 1, 1, 3, 4, 3, 4, 1, 5, 8, 0, 3, 6, 1, 6, 5, 2, 4, 5, 9, 9, 3, 9, 8, 5, 4, 6, 5, 2, 6, 4, 3, 0, 8, 0, 5, 7, 3, 4
OFFSET
1,2
EXAMPLE
x=1.45367366646104161868434356812734006445958806...
MATHEMATICA
Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100];
RealDigits[t] (* A196401 *)
t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196402 *)
t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196403 *)
t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196404 *)
t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196405 *)
t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196406 *)
CROSSREFS
Cf. A196401.
Sequence in context: A107793 A275275 A376180 * A268741 A263031 A004493
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved