login
A196405
Decimal expansion of the least positive number x satisfying e^(-x)=5*cos(x).
6
1, 5, 2, 7, 3, 6, 1, 1, 0, 3, 0, 1, 5, 4, 0, 6, 2, 9, 0, 4, 7, 0, 6, 0, 6, 4, 1, 0, 2, 1, 9, 1, 3, 5, 6, 5, 2, 2, 4, 7, 0, 0, 5, 2, 5, 6, 7, 8, 5, 4, 6, 8, 9, 9, 2, 7, 0, 2, 7, 5, 9, 1, 8, 1, 0, 0, 3, 0, 5, 6, 3, 1, 4, 1, 3, 4, 8, 5, 8, 7, 3, 6, 7, 9, 1, 6, 5, 4, 5, 4, 2, 9, 2, 7, 4, 1, 2, 2
OFFSET
1,2
EXAMPLE
x=1.52736110301540629047060641021913565224700...
MATHEMATICA
Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100];
RealDigits[t] (* A196401 *)
t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196402 *)
t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196403 *)
t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196404 *)
t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196405 *)
t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196406 *)
CROSSREFS
Cf. A196401.
Sequence in context: A183167 A115321 A127108 * A352406 A093606 A064677
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved