The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196404 Decimal expansion of the least positive number x satisfying e^(-x)=4*cos(x). 6
 1, 5, 1, 5, 8, 6, 4, 1, 2, 2, 8, 0, 5, 0, 0, 9, 8, 4, 9, 9, 3, 0, 9, 1, 2, 2, 5, 5, 8, 1, 5, 7, 1, 1, 1, 9, 3, 5, 2, 0, 0, 2, 2, 4, 9, 6, 1, 6, 8, 6, 3, 4, 3, 4, 6, 2, 9, 0, 0, 4, 0, 6, 7, 1, 3, 2, 4, 0, 0, 6, 0, 2, 9, 6, 7, 6, 7, 4, 5, 5, 9, 8, 9, 0, 6, 8, 1, 0, 4, 9, 0, 0, 9, 9, 5, 0, 3, 9, 7, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..100. EXAMPLE x=1.515864122805009849930912255815711193520022496168... MATHEMATICA Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}] t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196401 *) t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196402 *) t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196403 *) t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196404 *) t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196405 *) t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196406 *) CROSSREFS Cf. A196401. Sequence in context: A129766 A120283 A103986 * A128359 A340213 A170903 Adjacent sequences: A196401 A196402 A196403 * A196405 A196406 A196407 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 13:13 EDT 2023. Contains 365885 sequences. (Running on oeis4.)