This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196401 Decimal expansion of the least positive number x satisfying e^(-x)=cos(x). 8
 1, 2, 9, 2, 6, 9, 5, 7, 1, 9, 3, 7, 3, 3, 9, 8, 3, 8, 1, 1, 6, 8, 1, 8, 9, 1, 2, 1, 5, 9, 0, 6, 0, 7, 0, 4, 9, 4, 7, 3, 0, 2, 1, 2, 3, 0, 9, 7, 0, 2, 4, 7, 9, 1, 8, 8, 3, 6, 3, 6, 9, 2, 9, 4, 9, 7, 9, 9, 4, 3, 3, 7, 4, 2, 0, 5, 8, 2, 5, 8, 4, 4, 3, 3, 2, 1, 0, 6, 6, 8, 9, 5, 3, 3, 1, 5, 7, 0, 7, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE x=1.292695719373398381168189121590607049473021... MATHEMATICA Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}] t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196401 *) t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196402 *) t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196403 *) t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196404 *) t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196405 *) t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196406 *) CROSSREFS Cf. A196396. Sequence in context: A165715 A088928 A074957 * A199726 A171546 A268682 Adjacent sequences:  A196398 A196399 A196400 * A196402 A196403 A196404 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.