login
A196406
Decimal expansion of the least positive number x satisfying e^(-x)=6*cos(x).
6
1, 5, 3, 4, 8, 7, 4, 8, 2, 4, 9, 6, 0, 5, 3, 5, 9, 5, 5, 6, 1, 5, 2, 6, 2, 6, 3, 4, 9, 1, 3, 9, 5, 0, 2, 3, 6, 0, 9, 1, 5, 1, 3, 9, 2, 5, 9, 1, 4, 1, 6, 0, 7, 6, 2, 7, 3, 6, 3, 2, 0, 6, 0, 4, 5, 3, 1, 8, 0, 9, 5, 6, 6, 7, 9, 2, 1, 5, 9, 3, 0, 1, 0, 1, 3, 6, 0, 2, 5, 8, 2, 4, 1, 6, 2, 0, 8, 5, 7, 6
OFFSET
1,2
EXAMPLE
x=1.53487482496053595561526263491395023609151392591416076...
MATHEMATICA
Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100];
RealDigits[t] (* A196401 *)
t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196402 *)
t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196403 *)
t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196404 *)
t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196405 *)
t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196406 *)
CROSSREFS
Cf. A196401.
Sequence in context: A004162 A319053 A109681 * A070367 A086308 A229943
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved