login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086308 Decimal expansion of Otter's asymptotic constant beta for the number of unrooted trees. 7
5, 3, 4, 9, 4, 9, 6, 0, 6, 1, 4, 2, 3, 0, 7, 0, 1, 4, 5, 5, 0, 3, 7, 9, 7, 1, 1, 0, 5, 2, 0, 6, 8, 3, 9, 8, 1, 4, 3, 1, 1, 6, 5, 1, 4, 0, 5, 6, 9, 9, 0, 0, 9, 3, 9, 7, 7, 0, 7, 6, 8, 1, 0, 2, 3, 7, 5, 2, 3, 2, 1, 7, 8, 8, 0, 6, 4, 0, 6, 7, 2, 3, 9, 7, 8, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A000055(n) ~ 0.5349496061 * alpha^n * n^(-5/2), where alpha = 2.95576528565199497... (see A051491). - Vaclav Kotesovec, Jan 04 2013

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p. 296.

LINKS

Table of n, a(n) for n=0..85.

Eric Weisstein's World of Mathematics, Tree

EXAMPLE

0.53494960614230701455037971105206839814311651405699...

MATHEMATICA

digits = 86; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1+Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; beta = 2*Pi*b^3; RealDigits[beta, 10, digits] // First (* Jean-Fran├žois Alcover, Sep 24 2014 *)

CROSSREFS

Cf. A000055, A000081, A051491, A187770.

Sequence in context: A109681 A196406 A070367 * A229943 A198132 A117967

Adjacent sequences:  A086305 A086306 A086307 * A086309 A086310 A086311

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jul 15 2003

EXTENSIONS

Corrected and extended by Vaclav Kotesovec, Jan 04 2013

More terms by Vaclav Kotesovec, Jun 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 26 17:21 EDT 2017. Contains 285449 sequences.