login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187770 Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees. 12
4, 3, 9, 9, 2, 4, 0, 1, 2, 5, 7, 1, 0, 2, 5, 3, 0, 4, 0, 4, 0, 9, 0, 3, 3, 9, 1, 4, 3, 4, 5, 4, 4, 7, 6, 4, 7, 9, 8, 0, 8, 5, 4, 0, 7, 9, 4, 0, 1, 1, 9, 8, 5, 7, 6, 5, 3, 4, 9, 3, 5, 4, 5, 0, 2, 2, 6, 3, 5, 4, 0, 0, 4, 2, 0, 4, 7, 6, 4, 6, 0, 5, 3, 7, 9, 8, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A000081(n) ~ 0.439924012571 * alpha^n * n^(-3/2), alpha = 2.95576528565199497... (see A051491)

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.296

D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, p. 396.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1799, (this constant was computed by David Broadhurst in November 1999)

Eric Weisstein's World of Mathematics, RootedTree

EXAMPLE

0.43992401257102530404090339143454476479808540794...

MATHEMATICA

digits = 87; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^(-k)]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1 + Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; RealDigits[b, 10, digits] // First (* Jean-Fran├žois Alcover, Sep 24 2014 *)

CROSSREFS

Cf. A000081, A051491, A000055, A086308.

Sequence in context: A275473 A131805 A197694 * A103218 A107381 A062882

Adjacent sequences:  A187767 A187768 A187769 * A187771 A187772 A187773

KEYWORD

nonn,cons

AUTHOR

Vaclav Kotesovec, Jan 04 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 25 18:15 EDT 2017. Contains 288729 sequences.