login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees.
30

%I #33 Sep 22 2023 16:04:08

%S 4,3,9,9,2,4,0,1,2,5,7,1,0,2,5,3,0,4,0,4,0,9,0,3,3,9,1,4,3,4,5,4,4,7,

%T 6,4,7,9,8,0,8,5,4,0,7,9,4,0,1,1,9,8,5,7,6,5,3,4,9,3,5,4,5,0,2,2,6,3,

%U 5,4,0,0,4,2,0,4,7,6,4,6,0,5,3,7,9,8,6

%N Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees.

%C A000081(n) ~ 0.439924012571 * alpha^n * n^(-3/2), alpha = 2.95576528565199497... (see A051491)

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.296

%D D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, p. 396.

%H Vaclav Kotesovec, <a href="/A187770/b187770.txt">Table of n, a(n) for n = 0..1799</a>, (this constant was computed by David Broadhurst in November 1999)

%H Amirmohammad Farzaneh, Mihai-Alin Badiu, and Justin P. Coon, <a href="https://arxiv.org/abs/2309.09779">On Random Tree Structures, Their Entropy, and Compression</a>, arXiv:2309.09779 [cs.IT], 2023.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RootedTree.html">Rooted Tree</a>

%e 0.43992401257102530404090339143454476479808540794...

%t digits = 87; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^(-k)]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1 + Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; RealDigits[b, 10, digits] // First (* _Jean-François Alcover_, Sep 24 2014 *)

%Y Cf. A000081, A051491, A000055, A086308.

%K nonn,cons

%O 0,1

%A _Vaclav Kotesovec_, Jan 04 2013