login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187767
Number of bicolored cyclic patterns n X n.
7
0, 2, 3, 10, 15, 35, 63, 138, 255, 527, 1023, 2083, 4095, 8255, 16383, 32906, 65535, 131327, 262143, 524815, 1048575, 2098175, 4194303, 8390691, 16777215, 33558527, 67108863, 134225983, 268435455, 536887295, 1073741823, 2147516554, 4294967295, 8590000127, 17179869183
OFFSET
1,2
COMMENTS
A bicolored cyclic pattern is a 0-1 n x n matrix where the j-th row is equal to the first row rotated to the left by (j-1)*k places, with 1 <= k <= n a parameter. For example, with first row = 0110 we have
.
. (k=1) 0 1 1 0 (k=2) 0 1 1 0 (k=3) 0 1 1 0 (k=4) 0 1 1 0
. 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0
. 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
. 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
The (2^n-2)*n matrices so obtained are reduced considering equivalent those obtained exchanging 0's and 1's and those which produce the same pattern, apart translation.
FORMULA
a(1) = 0; a(n) = 2^(n-1)-1 if n is odd, 2^(n-1)+a(n/2) if n is even (conjectured).
a(n) = -1 + Sum_{d|n} d*A000048(d). - Andrew Howroyd, Jun 02 2017
EXAMPLE
a(4)=10 is represented below. See Links for more examples.
. 1000 0100 0010 0001 0101 1010 1001 0110 1100 0011
. 0100 0001 0100 0001 0101 0101 1100 1100 0011 0011
. 0010 0100 1000 0001 0101 1010 0110 1001 1100 0011
. 0001 0001 0001 0001 0101 0101 0011 0011 0011 0011
MATHEMATICA
cyPatt[n_]:=Block[{b, c}, c[v_, q_:1]:=Table[RotateLeft[v, i q], {i, n}]; b=Union[(First@Union[c@#, c[1-#]])& /@ IntegerDigits[Range[2^n/2-1], 2, n]]; Union@Flatten[Table[c[e, j], {j, n}, {e, b}], 1]];
(*count*) a[n_] := Length@cyPatt@n; Print["Seq = ", a/@Range[12]];
(*show*) showP[p_] := GraphicsGrid@Partition[ArrayPlot/@p, 8, 8, 1, Null];
showP[cyPatt[6]]
PROG
(PARI)
b(n)=sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n);
a(n)=sumdiv(n, d, d*b(d)) - 1; \\ Andrew Howroyd, Jun 02 2017
CROSSREFS
The number of patterns made of vertical stripes only is A056295(n).
Sequence in context: A075770 A135101 A108065 * A226881 A369781 A026336
KEYWORD
nonn
AUTHOR
Giovanni Resta, Jan 04 2013
EXTENSIONS
a(22)-a(35) from Andrew Howroyd, Jun 02 2017
STATUS
approved