login
A187767
Number of bicolored cyclic patterns n X n.
7
0, 2, 3, 10, 15, 35, 63, 138, 255, 527, 1023, 2083, 4095, 8255, 16383, 32906, 65535, 131327, 262143, 524815, 1048575, 2098175, 4194303, 8390691, 16777215, 33558527, 67108863, 134225983, 268435455, 536887295, 1073741823, 2147516554, 4294967295, 8590000127, 17179869183
OFFSET
1,2
COMMENTS
A bicolored cyclic pattern is a 0-1 n x n matrix where the j-th row is equal to the first row rotated to the left by (j-1)*k places, with 1 <= k <= n a parameter. For example, with first row = 0110 we have
.
. (k=1) 0 1 1 0 (k=2) 0 1 1 0 (k=3) 0 1 1 0 (k=4) 0 1 1 0
. 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0
. 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
. 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
The (2^n-2)*n matrices so obtained are reduced considering equivalent those obtained exchanging 0's and 1's and those which produce the same pattern, apart translation.
FORMULA
a(1) = 0; a(n) = 2^(n-1)-1 if n is odd, 2^(n-1)+a(n/2) if n is even (conjectured).
a(n) = -1 + Sum_{d|n} d*A000048(d). - Andrew Howroyd, Jun 02 2017
EXAMPLE
a(4)=10 is represented below. See Links for more examples.
. 1000 0100 0010 0001 0101 1010 1001 0110 1100 0011
. 0100 0001 0100 0001 0101 0101 1100 1100 0011 0011
. 0010 0100 1000 0001 0101 1010 0110 1001 1100 0011
. 0001 0001 0001 0001 0101 0101 0011 0011 0011 0011
MATHEMATICA
cyPatt[n_]:=Block[{b, c}, c[v_, q_:1]:=Table[RotateLeft[v, i q], {i, n}]; b=Union[(First@Union[c@#, c[1-#]])& /@ IntegerDigits[Range[2^n/2-1], 2, n]]; Union@Flatten[Table[c[e, j], {j, n}, {e, b}], 1]];
(*count*) a[n_] := Length@cyPatt@n; Print["Seq = ", a/@Range[12]];
(*show*) showP[p_] := GraphicsGrid@Partition[ArrayPlot/@p, 8, 8, 1, Null];
showP[cyPatt[6]]
PROG
(PARI)
b(n)=sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n);
a(n)=sumdiv(n, d, d*b(d)) - 1; \\ Andrew Howroyd, Jun 02 2017
CROSSREFS
The number of patterns made of vertical stripes only is A056295(n).
Sequence in context: A075770 A135101 A108065 * A226881 A369781 A026336
KEYWORD
nonn
AUTHOR
Giovanni Resta, Jan 04 2013
EXTENSIONS
a(22)-a(35) from Andrew Howroyd, Jun 02 2017
STATUS
approved