login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of bicolored cyclic patterns n X n.
7

%I #14 Jun 02 2017 12:28:59

%S 0,2,3,10,15,35,63,138,255,527,1023,2083,4095,8255,16383,32906,65535,

%T 131327,262143,524815,1048575,2098175,4194303,8390691,16777215,

%U 33558527,67108863,134225983,268435455,536887295,1073741823,2147516554,4294967295,8590000127,17179869183

%N Number of bicolored cyclic patterns n X n.

%C A bicolored cyclic pattern is a 0-1 n x n matrix where the j-th row is equal to the first row rotated to the left by (j-1)*k places, with 1 <= k <= n a parameter. For example, with first row = 0110 we have

%C .

%C . (k=1) 0 1 1 0 (k=2) 0 1 1 0 (k=3) 0 1 1 0 (k=4) 0 1 1 0

%C . 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0

%C . 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

%C . 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0

%C The (2^n-2)*n matrices so obtained are reduced considering equivalent those obtained exchanging 0's and 1's and those which produce the same pattern, apart translation.

%H Andrew Howroyd, <a href="/A187767/b187767.txt">Table of n, a(n) for n = 1..200</a>

%H Giovanni Resta, <a href="/A187767/a187767.png">Picture explaining sequence definition.</a>

%H Giovanni Resta, <a href="/A187767/a187767_1.png">Pictures for a(2)-a(7).</a>

%H Giovanni Resta, <a href="/A187767/a187767_2.png">Pictures for a(8) and a(9).</a>

%F a(1) = 0; a(n) = 2^(n-1)-1 if n is odd, 2^(n-1)+a(n/2) if n is even (conjectured).

%F a(n) = -1 + Sum_{d|n} d*A000048(d). - _Andrew Howroyd_, Jun 02 2017

%e a(4)=10 is represented below. See Links for more examples.

%e . 1000 0100 0010 0001 0101 1010 1001 0110 1100 0011

%e . 0100 0001 0100 0001 0101 0101 1100 1100 0011 0011

%e . 0010 0100 1000 0001 0101 1010 0110 1001 1100 0011

%e . 0001 0001 0001 0001 0101 0101 0011 0011 0011 0011

%t cyPatt[n_]:=Block[{b,c},c[v_,q_:1]:=Table[RotateLeft[v,i q],{i,n}]; b=Union[(First@Union[c@#,c[1-#]])& /@ IntegerDigits[Range[2^n/2-1], 2,n]]; Union@Flatten[Table[c[e,j],{j,n},{e,b}],1]];

%t (*count*) a[n_] := Length@cyPatt@n; Print["Seq = ",a/@Range[12]];

%t (*show*) showP[p_] := GraphicsGrid@Partition[ArrayPlot/@p,8,8,1,Null];

%t showP[cyPatt[6]]

%o (PARI)

%o b(n)=sumdiv(n,d,(d%2)*(moebius(d)*2^(n/d)))/(2*n);

%o a(n)=sumdiv(n,d,d*b(d)) - 1; \\ _Andrew Howroyd_, Jun 02 2017

%Y The number of patterns made of vertical stripes only is A056295(n).

%Y Cf. A000048, A056303, A127804.

%K nonn

%O 1,2

%A _Giovanni Resta_, Jan 04 2013

%E a(22)-a(35) from _Andrew Howroyd_, Jun 02 2017