login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187764
Number of uud-avoiding rooted non-crossing trees of n+1 vertices with the root 1.
0
1, 1, 3, 11, 45, 198, 919, 4445, 22215, 114000, 597790, 3191070, 17289023, 94845796, 525838005, 2941748627, 16585870501, 94147448172, 537592229784, 3085816136840, 17795391949590, 103051160368120, 598997937352830, 3493575551891610, 20438727738501275, 119911429466179978
OFFSET
0,3
LINKS
Y. Sun and Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832.
FORMULA
G.f.: (3-sqrt(5-4*C(x)))/2, where C(x) is the generating function of the Catalan numbers.
a(n) = Sum_(k=1..n, (C(2*k-2,k-1)*Sum_(i=k..n, i*C(i-1,k-1) * C(2*n-i-1,n-1))) /k)/n, n>0, a(0)=1. - Vladimir Kruchinin, Jan 23 2013
D-finite with recurrence 2*n*(2*n+1)*a(n) +3*(-27*n^2+47*n-16)*a(n-1) +30*(17*n^2-63*n+56)*a(n-2) -500*(2*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Jan 24 2013
a(n) = Sum_{k=1..n} binomial(2*k-2,k-1)*binomial(2*n,n-k)/n, a(0)=1. - Vladimir Kruchinin, Apr 28 2016
a(n) = Catalan(n)*hypergeom([1/2, 1-n], [n+2], -4) for n>=1. - Peter Luschny, Apr 28 2016
G.f.: A=A(x) satisfies 0 = -x*A^4 + 6*x*A^3 + (-11*x - 1)*A^2 + (6*x + 3)*A + (-x - 2). - Joerg Arndt, Apr 29 2016
G.f.: A(x) = F(G(x)), where F(x) = 1 + x*C(x), G(x) = x*C(x)^2, and C(x) is the Catalan generating function. - Alexander Burstein, Nov 10 2021
MAPLE
a := n -> `if`(n=0, 1, hypergeom([1/2, 1-n], [n+2], -4)*binomial(2*n, n)/(n+1)):
seq(simplify(a(n)), n=0..25); # Peter Luschny, Apr 28 2016
MATHEMATICA
a[n_] := Sum[Binomial[2k-2, k-1] Binomial[2n, n-k]/n, {k, 1, n}]; a[0] = 1;
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 23 2019, after Vladimir Kruchinin *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
C=(1-sqrt(1-4*x))/(2*x);
gf = (3-sqrt(5-4*C))/2;
v = Vec(gf)
/* Joerg Arndt, Jan 04 2013 */
(Maxima)
a(n):=if n=0 then 1 else sum((binomial(2*k-2, k-1) * sum(i*binomial(i-1, k-1) * binomial(2*n-i-1, n-1), i, k, n)) / k, k, 1, n) / n; /* Vladimir Kruchinin, Jan 23 2013 */
a(n):=if n=0 then 1 else sum(binomial(2*k-2, k-1)*binomial(2*n, n-k), k, 1, n)/n; /* Vladimir Kruchinin, Apr 28 2016 */
CROSSREFS
Cf. A000108 (Catalan numbers).
Sequence in context: A151131 A151132 A200075 * A372310 A151133 A213333
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jan 04 2013
STATUS
approved