login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213333
G.f. satisfies: A(x) = x + A( A(x)^2/(1 - A(x) + A(x)^2) ).
0
1, 1, 3, 11, 45, 199, 925, 4457, 22059, 111473, 572759, 2983137, 15713985, 83570601, 448105431, 2419865513, 13149245161, 71844158103, 394456062591, 2175202340551, 12042184753415, 66904188191285, 372909667831073, 2084656444044577, 11685284016254365
OFFSET
1,3
COMMENTS
Compare g.f. to: F(x) = x + F( -F(x)^2/(1 - F(x) + F(x)^2) ) when F(x) = x/(1+x).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 45*x^5 + 199*x^6 + 925*x^7 +...
Related expansions:
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 121*x^6 + 554*x^7 + 2639*x^8 +...
A(x)^2/(1 - A(x) + A(x)^2) = x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 167*x^6 + 760*x^7 + 3607*x^8 + 88440*x^10 +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+subst(A, x, A^2/(1-A+A^2+x*O(x^n)))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A187764 A372310 A151133 * A083886 A030866 A030941
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 08 2012
STATUS
approved