login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213332
Number of isomorphism classes of reduced Witt rings of fields with n orderings.
1
1, 1, 1, 2, 2, 3, 3, 6, 6, 9, 9, 16, 16, 24, 24, 42, 42, 64, 64, 105, 105, 159, 159, 258, 258, 390, 390, 614, 614, 925, 925, 1441, 1441, 2162, 2162, 3317, 3317, 4951, 4951, 7526, 7526, 11191, 11191, 16841, 16841, 24923, 24923, 37253, 37253, 54912, 54912, 81493, 81493, 119629, 119629, 176549
OFFSET
1,4
COMMENTS
The number with 2m+1 orderings is the same as the number with 2m orderings (cf. A213331).
LINKS
Thomas C. Craven, An application of Pólya's theory of counting to an enumeration problem arising in quadratic form theory, J. Combin. Theory Ser. A 29 (1980), no. 2, 174--181. MR0583956 (81j:10027).
MAPLE
read transforms;
w:=proc(n) option remember; global did; local v; # did(n, d)=1 if d|n otherwise 0
if n=1 then 1 elif (n mod 2) = 1 then w(n-1);
else v:=n/2;
(1/n)* ( add(2*i*w(i)*did(v, i), i=1..v) +
add( add(2*i*w(i)*w(n-2*k)*did(k, i), i=1..k), k=1..v-1));
fi; end;
[seq(w(n), n=1..100)];
CROSSREFS
Cf. A213331.
Sequence in context: A038716 A168659 A035642 * A133392 A101199 A032155
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 09 2012
STATUS
approved