OFFSET
1,7
COMMENTS
Column k=2 in the triangle A063995.
REFERENCES
George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(9/2) * n^(3/2)). - Vaclav Kotesovec, May 26 2023
EXAMPLE
a(6)=1 because the 11 partitions 6,51,42,411,33,321,3111,222,2211,21111,111111 have ranks 5,3,2,1,1,0,-1,-1,-2,-3,-5, respectively.
MAPLE
with(combinat): for n from 1 to 45 do P:=partition(n): c:=0: for j from 1 to nops(P) do if P[j][nops(P[j])]-nops(P[j])=2 then c:=c+1 else c:=c fi od: a[n]:=c: od: seq(a[n], n=1..45);
MATHEMATICA
Table[Count[Max[#]-Length[#]&/@IntegerPartitions[n], 2], {n, 60}] (* Harvey P. Dale, Dec 22 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 12 2004
EXTENSIONS
More terms from Joerg Arndt, Oct 07 2012
STATUS
approved