login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240579 Number of partitions of n such that the number of odd parts is not a part and the number of even parts is not a part. 14
1, 0, 2, 2, 3, 3, 6, 6, 10, 9, 18, 20, 30, 32, 53, 60, 82, 100, 138, 172, 216, 277, 346, 455, 533, 709, 834, 1117, 1262, 1705, 1927, 2596, 2875, 3872, 4289, 5763, 6294, 8429, 9221, 12286, 13320, 17685, 19184, 25333, 27332, 35931, 38770, 50728, 54516, 710069 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..49.

EXAMPLE

a(7) counts these 6 partitions:  7, 52, 511, 43, 31111, 1111111.

MATHEMATICA

z = 62; f[n_] := f[n] = IntegerPartitions[n];

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}]  (* A240573 *)

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240574 *)

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240575 *)

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240576 *)

Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240577 *)

Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240578 *)

Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}]  (* A240579 *)

CROSSREFS

Cf. A240573, A240574, A240575, A240576, A240577, A240578.

Sequence in context: A101199 A032155 A116932 * A292225 A238786 A238547

Adjacent sequences:  A240576 A240577 A240578 * A240580 A240581 A240582

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 10 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 11:34 EDT 2021. Contains 346259 sequences. (Running on oeis4.)