The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240578 Number of partitions of n such that the number of odd parts is a part and the number of even parts is not a part. 7
 0, 1, 0, 0, 0, 1, 0, 2, 2, 6, 3, 8, 9, 18, 15, 27, 33, 48, 55, 73, 101, 122, 162, 183, 272, 293, 421, 436, 666, 670, 1002, 989, 1522, 1483, 2237, 2152, 3303, 3155, 4762, 4521, 6874, 6498, 9754, 9188, 13825, 12995, 19345, 18139, 27013, 25297, 37332, 34909 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Table of n, a(n) for n=0..51. EXAMPLE a(9) counts these 6 partitions: 531, 51111, 441, 4221, 333, 22221. MATHEMATICA z = 62; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240573 *) Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240574 *) Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240575 *) Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240576 *) Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240577 *) Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240578 *) Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240579 *) CROSSREFS Cf. A240573, A240574, A240575, A240576, A240577, A240579. Sequence in context: A344469 A308159 A081745 * A273105 A307966 A129889 Adjacent sequences: A240575 A240576 A240577 * A240579 A240580 A240581 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 17:22 EDT 2023. Contains 365887 sequences. (Running on oeis4.)