OFFSET
0,6
EXAMPLE
a(10) counts these 8 partitions: 721, 6211, 5221, 4321, 43111, 421111, 3322, 32221.
MATHEMATICA
z = 62; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240573 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240574 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240575 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240576 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240577 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240578 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240579 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 10 2014
STATUS
approved