login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228693
Largest number of maximal independent sets of nodes in any tree on n nodes.
3
1, 1, 2, 2, 3, 4, 5, 8, 9, 16, 17, 32, 33, 64, 65, 128, 129, 256, 257, 512, 513, 1024, 1025, 2048, 2049, 4096, 4097, 8192, 8193, 16384, 16385, 32768, 32769, 65536, 65537, 131072, 131073, 262144, 262145, 524288, 524289, 1048576, 1048577, 2097152, 2097153, 4194304, 4194305, 8388608, 8388609, 16777216, 16777217
OFFSET
0,3
LINKS
Herbert S. Wilf, The number of maximal independent sets in a tree, SIAM Journal on Algebraic and Discrete Methods, volume 7, number 1, January 1986, pages 125-130. Also author's copy.
FORMULA
From Colin Barker, Sep 08 2013: (Start)
G.f.: -(x^4+x^3+x^2-x-1) / ((x-1)*(x+1)*(2*x^2-1)).
a(n) = 3*a(n-2)-2*a(n-4) for n > 4. (End)
MAPLE
f:=proc(n) if n=0 then 1
elif (n mod 2) = 0 then 2^((n/2)-1)+1 else 2^((n-1)/2); fi;
end;
MATHEMATICA
CoefficientList[Series[-(x^4 + x^3 + x^2 - x - 1) / ((x - 1) (x + 1) (2 x^2 - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 09 2013 *)
PROG
(PARI) Vec(-(x^4+x^3+x^2-x-1)/((x-1)*(x+1)*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 08 2013
(Magma) I:=[1, 1, 2, 2, 3]; [n le 5 select I[n] else 3*Self(n-2)-2*Self(n-4): n in [1..55]]; // Vincenzo Librandi, Sep 09 2013
CROSSREFS
Cf. A000051, A000079 (bisections).
Sequence in context: A211228 A338463 A186505 * A116676 A240575 A176538
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 02 2013
STATUS
approved