The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228695 Number of labeled graphs on 2n nodes with degree set {1,2,3}, with multiple edges and loops allowed. 2
 1, 1, 7, 47, 521, 7233, 129443, 2811701, 73203561, 2229207953, 78389689559, 3138945552419, 141714151130833, 7146006410498833, 399443567886826899, 24581290495461129817, 1655664011866577666737, 121413069330848040859809, 9648772995329567310573319 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..320 I. P. Goulden and D. M. Jackson, Labelled graphs with small vertex degrees and P-recursiveness, SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093). FORMULA See Goulden-Jackson for the e.g.f. Recurrence (for n>9): 12*(3*n^4 - 19*n^3 + 19*n^2 + 24*n - 31)*a(n) = 6*(9*n^5 - 57*n^4 + 35*n^3 + 160*n^2 - 151*n - 4)*a(n-1) + 9*(n-1)*(3*n^6 - 25*n^5 + 61*n^4 - 16*n^3 - 135*n^2 + 104*n - 4)*a(n-2) + 3*(n-2)*(n-1)*(21*n^5 - 106*n^4 - 62*n^3 + 603*n^2 - 448*n - 6)*a(n-3) + 3*(n-3)*(n-2)*(n-1)*(21*n^5 - 106*n^4 + 15*n^3 + 208*n^2 - 209*n - 46)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*(51*n^4 - 77*n^3 - 526*n^2 + 477*n - 110)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^5 - 42*n^4 - 29*n^3 + 159*n^2 - 120*n + 30)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(6*n^4 - 14*n^3 - 11*n^2 + 22*n + 10)*a(n-7) + (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n^4 - 7*n^3 - 20*n^2 + 17*n - 4)*a(n-8). - Vaclav Kotesovec, Sep 15 2014 MATHEMATICA max=20; f[x_]:=Sum[a[n]*(x^(n)/n!), {n, 0, max}]; a[0]=1; a[1]=1; coef = CoefficientList[9*x^3*(x+2)*(x^3 - 2*x^2 + x - 1)*f''[x] - 3*(x^10 - 10*x^8 - 6*x^7 + 22*x^6 + 8*x^5 + 20*x^4 + 26*x^3 + 16*x - 8)*f'[x] + (x^11 - 2*x^10 - 14*x^9 + 24*x^8 + 74*x^7 - 61*x^6 - 99*x^5 - 55*x^4 - 180*x^3 - 48*x^2 - 96*x - 24)*f[x], x]; Table[a[n], {n, 0, max}]/.Solve[Thread[coef[[2;; max]]==0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *) CROSSREFS Cf. A005814, A188404, A228694. Sequence in context: A178002 A288722 A006873 * A368295 A268063 A015097 Adjacent sequences: A228692 A228693 A228694 * A228696 A228697 A228698 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 02 2013 EXTENSIONS More terms from Vaclav Kotesovec, Sep 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 00:35 EDT 2024. Contains 372666 sequences. (Running on oeis4.)