Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 08 2018 01:47:49
%S 1,1,7,47,521,7233,129443,2811701,73203561,2229207953,78389689559,
%T 3138945552419,141714151130833,7146006410498833,399443567886826899,
%U 24581290495461129817,1655664011866577666737,121413069330848040859809,9648772995329567310573319
%N Number of labeled graphs on 2n nodes with degree set {1,2,3}, with multiple edges and loops allowed.
%H Vaclav Kotesovec, <a href="/A228695/b228695.txt">Table of n, a(n) for n = 0..320</a>
%H I. P. Goulden and D. M. Jackson, <a href="http://dx.doi.org/10.1137/0607007">Labelled graphs with small vertex degrees and P-recursiveness</a>, SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093).
%F See Goulden-Jackson for the e.g.f.
%F Recurrence (for n>9): 12*(3*n^4 - 19*n^3 + 19*n^2 + 24*n - 31)*a(n) = 6*(9*n^5 - 57*n^4 + 35*n^3 + 160*n^2 - 151*n - 4)*a(n-1) + 9*(n-1)*(3*n^6 - 25*n^5 + 61*n^4 - 16*n^3 - 135*n^2 + 104*n - 4)*a(n-2) + 3*(n-2)*(n-1)*(21*n^5 - 106*n^4 - 62*n^3 + 603*n^2 - 448*n - 6)*a(n-3) + 3*(n-3)*(n-2)*(n-1)*(21*n^5 - 106*n^4 + 15*n^3 + 208*n^2 - 209*n - 46)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*(51*n^4 - 77*n^3 - 526*n^2 + 477*n - 110)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^5 - 42*n^4 - 29*n^3 + 159*n^2 - 120*n + 30)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(6*n^4 - 14*n^3 - 11*n^2 + 22*n + 10)*a(n-7) + (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n^4 - 7*n^3 - 20*n^2 + 17*n - 4)*a(n-8). - _Vaclav Kotesovec_, Sep 15 2014
%t max=20; f[x_]:=Sum[a[n]*(x^(n)/n!),{n,0,max}]; a[0]=1; a[1]=1; coef = CoefficientList[9*x^3*(x+2)*(x^3 - 2*x^2 + x - 1)*f''[x] - 3*(x^10 - 10*x^8 - 6*x^7 + 22*x^6 + 8*x^5 + 20*x^4 + 26*x^3 + 16*x - 8)*f'[x] + (x^11 - 2*x^10 - 14*x^9 + 24*x^8 + 74*x^7 - 61*x^6 - 99*x^5 - 55*x^4 - 180*x^3 - 48*x^2 - 96*x - 24)*f[x],x]; Table[a[n],{n,0,max}]/.Solve[Thread[coef[[2;;max]]==0]][[1]] (* _Vaclav Kotesovec_, Sep 15 2014 *)
%Y Cf. A005814, A188404, A228694.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Sep 02 2013
%E More terms from _Vaclav Kotesovec_, Sep 15 2014