login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228694
Number of labeled graphs on 2n nodes with degree set {1,3}, with multiple edges and loops allowed.
3
1, 5, 186, 22960, 6831650, 4071581010, 4297593045900, 7359945086654160, 19160998099781838300, 72124861521922576867500, 377272837054974521764903800, 2655805439512625993259947280000, 24502785480337947107875310460499800, 289788471352423824164622588783247815000
OFFSET
0,2
LINKS
I. P. Goulden and D. M. Jackson, Labelled graphs with small vertex degrees and P-recursiveness, SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093).
FORMULA
See Goulden-Jackson for the e.g.f.
Recurrence (for n>5): 3*a(n) = 3*(2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + 3*(n-1)*(2*n - 3)*(2*n - 1)*(10*n + 7)*a(n-2) - 2*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n + 4)*a(n-3) + 2*(n-3)*(n-2)*(n+1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-4). - Vaclav Kotesovec, Sep 15 2014
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n-4). - Vaclav Kotesovec, Sep 15 2014
MATHEMATICA
max=30; f[x_]:=Sum[a[n]*(x^n/n!), {n, 0, max}]; a[0]=1; a[1]=5; coef = CoefficientList[9*x^3*(x^4 - 4*x^2 - 2)*f''[x] - 3*(x^10 - 14*x^8 + 41*x^6 + 36*x^4 + 2*x^2 - 8)*f'[x] + x*(x^10 - 18*x^8 + 120*x^6 - 272*x^4 - 324*x^2 - 120)*f[x], x]; Table[a[n], {n, 0, max, 2}]/.Solve[Thread[coef[[2;; max]]==0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 02 2013
EXTENSIONS
More terms from Vaclav Kotesovec, Sep 15 2014
STATUS
approved