login
A211228
Shallow diagonal sums of A211226.
2
1, 1, 2, 2, 3, 4, 5, 8, 8, 15, 13, 28, 21, 51, 34, 92, 55, 164, 89, 290, 144, 509, 233, 888, 377, 1541, 610, 2662, 987, 4580, 1597, 7852, 2584, 13419, 4181, 22868, 6765, 38871, 10946, 65920, 17711
OFFSET
0,3
COMMENTS
The even-indexed terms a(2*n) count the compositions of n+2 into odd parts while the odd-indexed terms a(2*n+3) count the total number of parts in the compositions of n+2 into odd parts.
FORMULA
Let f(n) := (floor(n/2))! and define c(n,k) = f(n)/(f(k)*f(n-k)) = A211226(n,k). Then a(n) = sum {k = 0..floor(n/2)} c(n-k,k).
a(2*n) = A000045(n+2); a(2*n-1) = A029907(n).
O.g.f.: (1+x-2*x^4-x^5-x^6)/(1-x^2-x^4)^2 = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + ....
EXAMPLE
The compositions of 5 into odd parts are 1+1+1+1+1, 1+1+3, 1+3+1, 3+1+1 and 5. Hence a(6) = 5 and a(9) = 15.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 05 2012
STATUS
approved