login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211229 Matrix inverse of lower triangular array A211226. 1
1, -1, 1, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, -2, 1, -1, 1, 0, 0, -1, 1, 2, -3, 3, 0, 0, -3, 1, -2, 2, -3, 3, 0, 0, -1, 1, 9, -8, 8, -12, 6, 0, 0, -4, 1, -9, 9, -8, 8, -6, 6, 0, 0, -1, 1, 44, -45, 45, -40, 20, -30, 10, 0, 0, -5, 1, -44, 44, -45, 45, -20, 20, -10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,14

COMMENTS

This triangle is connected to the derangement numbers. The subtriangles (T(2*n,2*k))n,k>=0, -(T(2*n+1,2*k))n,k>=0, and (T(2*n+1,2*k+1))n,k>=0 are all equal to A008290, while the subtriangle (T(2*n,2*k+1))n,k>=0 equals -A180188 (with an extra initial row of zeros).

LINKS

Table of n, a(n) for n=0..72.

FORMULA

T(2*n,2*k) = T(2*n+1,2*k+1) = -T(2*n+1,2*k) = binomial(n,k)*A000166(n-k) = n!/k!*sum {i = 0..n-k} (-1)^i/i!;

T(2*n,2*k+1) = -n*binomial(n-1,k)*A000166(n-k-1) = -n!/k!*sum {i = 0..n-k-1} (-1)^i/i!.

T(n,k) = T(n-k,0)*A211226(n,k).

Column entries:

T(2*n,0) = A000166(n), T(2*n,2) = A000240(n), T(2*n,4) = A000387(n), T(2*n,6) = A000449(n), T(2*n,8) = A000475(n).

EXAMPLE

Triangle begins

.n\k.|....0....1....2....3....4....5....6....7....8....9

= = = = = = = = = = = = = = = = = = = = = = = = = = = = =

..0..|....1

..1..|...-1....1

..2..|....0...-1....1

..3..|....0....0...-1....1

..4..|....1....0....0...-2....1

..5..|...-1....1....0....0...-1....1

..6..|....2...-3....3....0....0...-3....1

..7..|...-2....2...-3....3....0....0...-1....1

..8..|....9...-8....8..-12....6....0....0...-4....1

..9..|...-9....9...-8....8...-6....6....0....0...-1....1

...

CROSSREFS

Cf. A000166, A000240, A000387, A000449, A000475, A008290, A180188, A211226.

Sequence in context: A005091 A086831 A191340 * A111405 A089053 A214979

Adjacent sequences:  A211226 A211227 A211228 * A211230 A211231 A211232

KEYWORD

sign,easy,tabl

AUTHOR

Peter Bala, Apr 05 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 19 11:04 EDT 2014. Contains 240748 sequences.