login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191340
(A022839 mod 2)+(A108598 mod 2)
4
1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1
OFFSET
1,5
COMMENTS
Let r=sqrt(5) and s=r/(r-1). There numbers yield the following two complementary Beatty sequences:
A022839(n)=[nr], A108598(n)=[ns], where [ ]=floor.
A191340(n)=the number of odd numbers in {[nr], [ns]}.
LINKS
FORMULA
a(n)=([nr] mod 2)+([ns] mod 2), where r=sqrt(5), s=r/(r-1), [ ]=floor.
MATHEMATICA
r = Sqrt[5]; s = r/(r - 1); h = 120;
u = Table[Floor[n*r], {n, 1, h}] (* A022839 *)
v = Table[Floor[n*s], {n, 1, h}] (* A108598 *)
w = Mod[u, 2] + Mod[v, 2] (* A191340 *)
Flatten[Position[w, 0]] (* A191380 *)
Flatten[Position[w, 1]] (* A191381 *)
Flatten[Position[w, 2]] (* A191382 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 01 2011
STATUS
approved