login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316675
Triangle read by rows: T(n,k) gives the number of ways to stack n triangles in a valley so that the right wall has k triangles for n >= 0 and 0 <= k <= n.
7
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 4, 3, 4, 3, 2, 1, 1, 1, 0, 0, 1, 1, 5, 4, 5, 4, 3, 2, 1, 1, 1
OFFSET
0,33
LINKS
Seiichi Manyama, Rows n = 0..50, flattened
FORMULA
For m >= 0,
Sum_{n>=2m} T(n,2m) *x^n = x^(2m) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).
Sum_{n>=2m+1} T(n,2m+1)*x^n = x^(2m+1) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).
EXAMPLE
T(8,4) = 3.
* *
/ \ / \
*---* * *---*---* *---*
\ / \ / \ \ / \ / \ / \ / \
*---*---* *---*---* *---*---*
\ / \ / \ / \ / \ / \ /
*---* *---* *---*
\ / \ / \ /
* * *
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 1, 1, 1;
0, 0, 1, 1, 1, 1;
0, 0, 1, 1, 1, 1, 1;
0, 0, 1, 1, 2, 1, 1, 1;
0, 0, 1, 1, 3, 2, 1, 1, 1;
0, 0, 1, 1, 3, 3, 2, 1, 1, 1;
0, 0, 1, 1, 3, 3, 3, 2, 1, 1, 1;
0, 0, 1, 1, 4, 3, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 5, 4, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 5, 5, 6, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 5, 5, 8, 6, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 6, 5, 10, 8, 7, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 7, 6, 11, 10, 10, 7, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 7, 7, 13, 11, 12, 10, 7, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 7, 7, 16, 13, 14, 12, 10, 7, 5, 4, 3, 2, 1, 1, 1;
CROSSREFS
Row sums give A006950.
Sums of even columns give A059777.
Cf. A072233.
Sequence in context: A191340 A211229 A335621 * A111405 A089053 A214979
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 10 2018
STATUS
approved