OFFSET
0,4
COMMENTS
Poincaré series [or Poincare series] (or Molien series) for symmetric invariants in F_2(b_1, b_2, ... b_n) ⊗ E(e_1, e_2, ... e_n) with b_i 2-dimensional, e_i one-dimensional and the permutation action of S_n, in the case n=4.
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 108.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-5,8,-11,13,-15,16,-15,13,-11,8,-5,3,-1).
FORMULA
G.f.: (x^4-x^3+x^2-x+1)*(x^6-x^5+x^4-x^3+x^2-x+1) / ( (1+x+x^2)*(x^4+1)*(x^2+1)^2*(x-1)^4 ). - R. J. Mathar, Dec 18 2014
a(n)= +3*a(n-1) -5*a(n-2) +8*a(n-3) -11*a(n-4) +13*a(n-5) -15*a(n-6) +16*a(n-7) -15*a(n-8) +13*a(n-9) -11*a(n-10) +8*a(n-11) -5*a(n-12) +3*a(n-13) -a(n-14). - R. J. Mathar, Dec 18 2014
MATHEMATICA
CoefficientList[Series[(1+x)*(1+x^3)*(1+x^5)*(1+x^7)/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^8)), {x, 0, 70}], x] (* Jinyuan Wang, Mar 10 2020 *)
PROG
(PARI) Vec((1+x)*(1+x^3)*(1+x^5)*(1+x^7)/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^8))+ O(x^100)) \\ Michel Marcus, Mar 19 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2003
STATUS
approved