login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089597
G.f.: (1+x)*(1+x^3)*(1+x^5)*(1+x^7)/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^8)).
8
1, 1, 1, 2, 3, 4, 5, 7, 10, 12, 14, 18, 23, 27, 31, 38, 46, 52, 59, 69, 80, 90, 100, 114, 130, 143, 157, 176, 196, 214, 233, 257, 283, 306, 330, 360, 392, 421, 451, 488, 527, 562, 599, 643, 689, 732, 776, 828, 883, 933, 985, 1046, 1109, 1168, 1229, 1299, 1372, 1440, 1510
OFFSET
0,4
COMMENTS
Poincaré series [or Poincare series] (or Molien series) for symmetric invariants in F_2(b_1, b_2, ... b_n) ⊗ E(e_1, e_2, ... e_n) with b_i 2-dimensional, e_i one-dimensional and the permutation action of S_n, in the case n=4.
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 108.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-5,8,-11,13,-15,16,-15,13,-11,8,-5,3,-1).
FORMULA
G.f.: (x^4-x^3+x^2-x+1)*(x^6-x^5+x^4-x^3+x^2-x+1) / ( (1+x+x^2)*(x^4+1)*(x^2+1)^2*(x-1)^4 ). - R. J. Mathar, Dec 18 2014
a(n)= +3*a(n-1) -5*a(n-2) +8*a(n-3) -11*a(n-4) +13*a(n-5) -15*a(n-6) +16*a(n-7) -15*a(n-8) +13*a(n-9) -11*a(n-10) +8*a(n-11) -5*a(n-12) +3*a(n-13) -a(n-14). - R. J. Mathar, Dec 18 2014
MATHEMATICA
CoefficientList[Series[(1+x)*(1+x^3)*(1+x^5)*(1+x^7)/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^8)), {x, 0, 70}], x] (* Jinyuan Wang, Mar 10 2020 *)
PROG
(PARI) Vec((1+x)*(1+x^3)*(1+x^5)*(1+x^7)/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^8))+ O(x^100)) \\ Michel Marcus, Mar 19 2014
CROSSREFS
Sequence in context: A255641 A365093 A122975 * A022957 A036028 A036033
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2003
STATUS
approved