login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089599
G.f.: (1+x^5+x^7+x^8+x^10+x^15)/((1-x^2)(1-x^3)(1-x^4)(1-x^6)^2(1-x^9)).
5
1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 13, 15, 23, 24, 35, 40, 52, 60, 79, 87, 112, 127, 155, 177, 216, 240, 290, 326, 382, 430, 503, 557, 648, 720, 822, 914, 1041, 1144, 1298, 1428, 1600, 1760, 1967, 2146, 2392, 2609, 2882, 3142, 3463, 3752, 4127, 4468, 4882, 5282, 5760, 6202
OFFSET
0,5
COMMENTS
Poincaré series [or Poincare series] (or Molien series) for (P[x_0, x_1] ⊗ P[x_0, x_1] ⊗ P[x_0, x_1] )^(S_3).
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 200.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -2, 1, -1, 0, 2, -2, 1, 0, 0, 1, -2, 2, 0, -1, 1, -2, 0, 0, 1, 1, -1).
FORMULA
G.f.: (1-x+x^5-x^9+x^10)/((1-x)^2*(1-x^2)*(1-x^4)*(1-x^6)*(1-x^9)*(1+x+x^2)). See also the NAME. - Wolfdieter Lang, Mar 19 2014
PROG
(PARI) Vec((1+x^5+x^7+x^8+x^10+x^15)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)^2*(1-x^9)) + O(x^100)) \\ Michel Marcus, Mar 19 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2003
STATUS
approved