login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008818
Expansion of (1+2*x^3+x^4)/((1-x^2)^2*(1-x^4)); Molien series for 3-dimensional representation of group 2x = [ 2+,4+ ] = CC_4 = C4.
4
1, 0, 2, 2, 5, 4, 8, 8, 13, 12, 18, 18, 25, 24, 32, 32, 41, 40, 50, 50, 61, 60, 72, 72, 85, 84, 98, 98, 113, 112, 128, 128, 145, 144, 162, 162, 181, 180, 200, 200, 221, 220, 242, 242, 265, 264, 288, 288, 313, 312, 338, 338, 365, 364, 392, 392, 421, 420, 450
OFFSET
0,3
REFERENCES
B. Sturmfels, Algorithms in Invariant Theory, Springer, p. 42.
FORMULA
G.f.: (1 -x +x^2 -x^3)/( (1+x^2)*(1+x)^2*(1-x)^3 ). - R. J. Mathar, Dec 18 2014
a(n) = (5 + 7*(-1)^n + (2-i*2)*(-i)^n + (2+2*i)*i^n + 2*(3+(-1)^n)*n + 2*n^2) / 16 where i = sqrt(-1). - Colin Barker, Oct 15 2015
a(n) = (n/2 + 9/4)*floor(n/2) + floor((n+1)/4) - (n^2 + 7*n)/8 + 1. - Ridouane Oudra, Oct 17 2020
MAPLE
(1+2*x^3+x^4)/((1-x^2)^2*(1-x^4)): seq(coeff(series(%, x, n+1), x, n), n=0..60);
MATHEMATICA
CoefficientList[Series[(1+2x^3+x^4)/((1-x^2)^2(1-x^4)), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 15 2013 *)
LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {1, 0, 2, 2, 5, 4, 8}, 60] (* Harvey P. Dale, Aug 20 2017 *)
PROG
(PARI) a(n) = (5 + 7*(-1)^n + (2-I*2)*(-I)^n + (2+2*I)*I^n + 2*(3+(-1)^n)*n + 2*n^2) / 16 \\ Colin Barker, Oct 15 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+2*x^3+x^4)/((1-x^2)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008818_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+2*x^3+x^4)/((1-x^2)^2*(1-x^4))).list()
A008818_list(60) # G. C. Greubel, Sep 12 2019
(GAP) a:=[1, 0, 2, 2, 5, 4, 8];; for n in [8..60] do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-4]-a[n-5]-a[n-6]+a[n-7]; od; a; # G. C. Greubel, Sep 12 2019
CROSSREFS
Expansions of the form (1 +2*x^(2*m+1) +x^(4*m))/((1-x^2)^2*(1-x^(4*m))): this sequence (m=1), A008819 (m=2), A008820 (m=3), A008821 (m=4).
Sequence in context: A007281 A101085 A088880 * A089599 A206556 A127683
KEYWORD
nonn,easy
STATUS
approved