login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008821
Expansion of (1+2*x^9+x^16)/((1-x^2)^2*(1-x^16)).
3
1, 0, 2, 0, 3, 0, 4, 0, 5, 2, 6, 4, 7, 6, 8, 8, 11, 10, 14, 12, 17, 14, 20, 16, 23, 20, 26, 24, 29, 28, 32, 32, 37, 36, 42, 40, 47, 44, 52, 48, 57, 54, 62, 60, 67, 66, 72, 72, 79, 78, 86, 84, 93, 90, 100, 96, 107, 104, 114, 112, 121, 120, 128, 128, 137, 136
OFFSET
0,3
LINKS
FORMULA
G.f.: (1+2*x^9+x^16)/((1-x^2)^2*(1-x^16)). - G. C. Greubel, Sep 13 2019
G.f.: (1-x+x^2-x^3+x^4-x^5+x^6-x^7+x^8+x^9-x^10+x^11-x^12+x^13-x^14+x^15)/((1-x)^3*(1+x)^2*(1+x^2)*(1+x^4)*(1+x^8)). - R. J. Mathar, Feb 04 2022
MAPLE
seq(coeff(series((1+2*x^9+x^16)/((1-x^2)^2*(1-x^16)), x, n+1), x, n), n = 0..75); # G. C. Greubel, Sep 13 2019
MATHEMATICA
CoefficientList[Series[(1+2*x^9+x^16)/((1-x^2)^2*(1-x^16)), {x, 0, 75}], x] (* or *) LinearRecurrence[{1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1}, {1, 0, 2, 0, 3, 0, 4, 0, 5, 2, 6, 4, 7, 6, 8, 8, 11, 10, 14}, 75] (* G. C. Greubel, Sep 13 2019 *)
PROG
(PARI) my(x='x+O('x^75)); Vec((1+2*x^9+x^16)/((1-x^2)^2*(1-x^16))) \\ G. C. Greubel, Sep 13 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 75); Coefficients(R!( (1+2*x^9+x^16)/((1-x^2)^2*(1-x^16)) )); // G. C. Greubel, Sep 13 2019
(Sage)
def A008821_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+2*x^9+x^16)/((1-x^2)^2*(1-x^16))).list()
A008821_list(75) # G. C. Greubel, Sep 13 2019
(GAP) a:=[1, 0, 2, 0, 3, 0, 4, 0, 5, 2, 6, 4, 7, 6, 8, 8, 11, 10, 14];; for n in [20..75] do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-16]-a[n-17]-a[n-18]+a[n-19]; od; a; # G. C. Greubel, Sep 13 2019
CROSSREFS
Expansions of the form (1 +2*x^(2*m+1) +x^(4*m))/((1-x^2)^2*(1-x^(4*m))): A008818 (m=1), A008819 (m=2), A008820 (m=3), this sequence (m=4).
Sequence in context: A029180 A008802 A008809 * A194749 A284969 A097852
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Sep 13 2019
STATUS
approved