login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008822
Expansion of (1 + 2*x^2 + x^3)/((1 - x)^2*(1 - x^3)).
4
1, 2, 5, 10, 15, 22, 31, 40, 51, 64, 77, 92, 109, 126, 145, 166, 187, 210, 235, 260, 287, 316, 345, 376, 409, 442, 477, 514, 551, 590, 631, 672, 715, 760, 805, 852, 901, 950, 1001, 1054, 1107, 1162, 1219, 1276, 1335, 1396, 1457, 1520, 1585, 1650, 1717, 1786, 1855, 1926, 1999, 2072
OFFSET
0,2
COMMENTS
Corresponds to the best known lower bound for the tie problem. - Jörg Zurkirchen, Oct 15 2008
LINKS
R. Chapman et al., 2-modular lattices from ternary codes, J. Th. des Nombres de Bordeaux, 14 (2002), 73-85.
FORMULA
a(n) = ceiling((n+1)*(2*n+1)/3). - Jörg Zurkirchen, Oct 15 2008
a(n) = (n+1)^2 - floor((n+1)*(n+2)/3). - Bruno Berselli, Mar 02 2017
MAPLE
seq(ceil((n+1)*(2*n+1)/3), n=0..60); # G. C. Greubel, Sep 13 2019
MATHEMATICA
CoefficientList[Series[(1+2x^2+x^3)/((1-x)^2(1-x^3)), {x, 0, 60}], x] (* or *) LinearRecurrence[{2, -1, 1, -2, 1}, {1, 2, 5, 10, 15}, 60] (* Vincenzo Librandi, Mar 31 2017 *)
PROG
(PARI) Vec((1+2*x^2+x^3)/((1-x)^2*(1-x^3)) + O(x^80)) \\ Michel Marcus, Oct 28 2015
(Magma) [Ceiling((n+1)*(2*n+1)/3): n in [0..60]]; // Vincenzo Librandi, Mar 31 2017
(Sage) [ceil((n+1)*(2*n+1)/3) for n in (0..60)] # G. C. Greubel, Sep 13 2019
(GAP) a:=[1, 2, 5, 10, 15];; for n in [6..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-3]-2*a[n-4]+a[n-5]; od; a; # G. C. Greubel, Sep 13 2019
CROSSREFS
Expansions of the form (1 +2*x^(m+1) +x^(2*m+1))/((1-x)^2*(1-x^(2*m+1))): this sequence (m=1), A008823 (m=2), A008824 (m=3), A008825 (m=4).
Sequence in context: A125622 A080551 A179207 * A267454 A013927 A163059
KEYWORD
nonn,easy
STATUS
approved