login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179207
a(n) = n - 1 + ceiling((-3 + n^2)/2) if n > 1 with a(1)=1, complement of A182835.
5
1, 2, 5, 10, 15, 22, 29, 38, 47, 58, 69, 82, 95, 110, 125, 142, 159, 178, 197, 218, 239, 262, 285, 310, 335, 362, 389, 418, 447, 478, 509, 542, 575, 610, 645, 682, 719, 758, 797, 838, 879, 922, 965, 1010, 1055, 1102, 1149, 1198, 1247, 1298, 1349, 1402, 1455
OFFSET
1,2
FORMULA
a(n) = n - 1 + ceiling((-3 + n^2)/2) if n > 1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Joerg Arndt, Apr 02 2011
From Guenther Schrack, Jun 06 2018: (Start)
a(n) = (2*n^2 + 4*n - 9 + (-1)^n)/4 for n > 1.
a(n) = a(n-2) + 2*n for n > 3.
a(-n) = a(n-2) for n > 1.
a(n) = n - 1 + A047838(n) for n > 1. (End)
G.f.: x * (1 + x^2 + 2*x^3 - 2*x^4) / (1 - 2*x + 2*x^3 - x^4). - Michael Somos, Oct 28 2018
Sum_{n>=1} 1/a(n) = 8/3 + tan(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)) - cot(sqrt(3/2)*Pi)*Pi/(2*sqrt(6)). - Amiram Eldar, Sep 16 2022
MAPLE
a:=n->n-1+ceil((-3+n^2)/2): 1, seq(a(n), n=2..60); # Muniru A Asiru, Aug 05 2018
MATHEMATICA
Table[n-1+Ceiling[(n*n-3)/2], {n, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {2, 5, 10, 15}, 52]] (* Ray Chandler, Jul 15 2015 *)
PROG
(GAP) a:=[2, 5, 10, 15];; for n in [5..60] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; a:=Concatenation([1], a); # Muniru A Asiru, Aug 05 2018
CROSSREFS
First differences: A109613(n) for n > 2. - Guenther Schrack, Jun 06 2018
Sequence in context: A024390 A125622 A080551 * A008822 A267454 A013927
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 07 2011
STATUS
approved