The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179210 a(n) is the smallest prime q such that (r-q)/(q-p) = n, where p
 5, 3, 31, 8123, 139, 199, 45439, 1933, 523, 156157, 1951, 1669, 480209, 2971, 7759, 2181737, 12163, 28351, 6012899, 20809, 16141, 3933599, 163063, 86629, 13626257, 25471, 40639, 60487759, 79699, 149629, 217795247, 625699, 552403 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: a(n) > 0 for all n >= 1. It appears that a(3n+1) is greater than either a(3n) or a(3n+2). - Vladimir Shevelev and Robert G. Wilson v, Oct 20 2016 LINKS Vladimir Shevelev and Robert G. Wilson v, Table of n, a(n) for n = 1..69 FORMULA a(n) = nextprime(A181994(n)). - Robert G. Wilson v, Dec 23 2016 MATHEMATICA p = 2; q = 3; r = 5; t[_] = 0; While[p < 10^9, If[ Mod[r - q, q - p] == 0 && t[(r - q)/(q - p)] == 0, t[(r - q)/(q - p)] = q; Print[{(r - q)/(q - p), q}]]; p = q; q = r; r = NextPrime@ r]; t /@ Range @ 40 (* Robert G. Wilson v, Dec 11 2016 *) Table[SelectFirst[Partition[Prime[Range[12010000]], 3, 1], Differences[#][[2]]/ Differences[#][[1]]==n&], {n, 33}][[All, 2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2018 *) PROG (PARI) a(n) = forprime(q=3, , my(p=precprime(q-1), r=nextprime(q+1)); if((r-q)/(q-p)==n, return(q))) \\ Felix FrÃ¶hlich, Dec 06 2018 CROSSREFS For records see A278574. Cf. A001223, A179256, A181994. Sequence in context: A324499 A189747 A279066 * A291843 A187278 A288184 Adjacent sequences:  A179207 A179208 A179209 * A179211 A179212 A179213 KEYWORD nonn AUTHOR Vladimir Shevelev, Jan 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 02:19 EDT 2021. Contains 345042 sequences. (Running on oeis4.)