OFFSET
1,4
COMMENTS
Define partial sums S(N) = Sum_{n=1..N} n and T(N) = Sum_{n=1..N} a(n). Then lim_{N->infinity} T(N)/S(N) -> approx 0.435.
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..8000
EXAMPLE
n=1: 2*2*(2*2 + 1) - 1 = 19 prime so k=1 as 2=prime(1).
n=2: 2*2^2*(2*2^2 + 1) - 1 = 71 prime so k=1 as 2=prime(1).
MAPLE
A179206 := proc(n) local k, pk; for k from 1 do pk := ithprime(k)*2^n ; if isprime(pk*(pk+1)-1) then return k; end if; end do: end proc:
seq(A179206(n), n=1..80) ; # R. J. Mathar, Jul 05 2010
MATHEMATICA
sik[n_]:=Module[{n2=2^n, k=1}, While[CompositeQ[(Prime[k]n2)(Prime[ k]n2+1)-1], k++]; k]; Array[sik, 80] (* Harvey P. Dale, Dec 07 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jul 02 2010
EXTENSIONS
More terms from R. J. Mathar, Jul 05 2010
STATUS
approved