The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109613 Odd numbers repeated. 77
 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The number of rounds in a round-robin tournament with n competitors. - A. Timothy Royappa, Aug 13 2011 Diagonal sums of number triangle A113126. - Paul Barry, Oct 14 2005 When partitioning a convex n-gon by all the diagonals, the maximum number of sides in resulting polygons is 2*floor(n/2)+1 = a(n-1) (from Moscow Olympiad problem 1950). - Tanya Khovanova, Apr 06 2008 Its ordinal transform is A000034. - Paolo P. Lava, Jun 25 2009 The inverse values of the coefficients in the series expansion of f(x) = (1/2)*(1+x)*log((1+x)/(1-x)) lead to this sequence; cf. A098557. - Johannes W. Meijer, Nov 12 2009 From Reinhard Zumkeller, Dec 05 2009: (Start) First differences: A010673; partial sums: A000982; A059329(n) = Sum_{k = 0..n} a(k)*a(n-k); A167875(n) = Sum_{k = 0..n} a(k)*A005408(n-k); A171218(n) = Sum_{k = 0..n} a(k)*A005843(n-k); A008794(n+2) = Sum_{k = 0..n} a(k)*A059841(n-k). (End) Dimension of the space of weight 2n+4 cusp forms for Gamma_0(5). - Michael Somos, May 29 2013 For n > 4: a(n) = A230584(n) - A230584(n-2). - Reinhard Zumkeller, Feb 10 2015 The arithmetic function v+-(n,2) as defined in A290988. - Robert Price, Aug 22 2017 For n > 0, also the chromatic number of the (n+1)-triangular (Johnson) graph. - Eric W. Weisstein, Nov 17 2017 a(n-1), for n >= 1, is also the upper bound a_{up}(b), where b = 2*n + 1, in the first (top) row of the complete coach system Sigma(b) of Hilton and Pedersen [H-P]. All odd numbers <= a_{up}(b) of the smallest positive restricted residue system of b appear once in the first rows of the c(2*n+1) = A135303(n) coaches. If b is an odd prime a_{up}(b) is the maximum. See a comment in the proof of the quasi-order theorem of H-P, on page 263 ["Furthermore, every possible a_i < b/2 ..."]. For an example see below. - Wolfdieter Lang, Feb 19 2020 Satisfies the nested recurrence a(n) = a(a(n-2)) + 2*a(n-a(n-1)) with a(0) = a(1) = 1. Cf. A004001. - Peter Bala, Aug 30 2022 REFERENCES Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, 3rd printing 2012, pp. (260-281). LINKS Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Chromatic Number Eric Weisstein's World of Mathematics, Johnson Graph Eric Weisstein's World of Mathematics, Triangular Graph Wikipedia, Round-robin tournament Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = 2*floor(n/2) + 1. a(n) = A052928(n) + 1 = 2*A004526(n) + 1. a(n) = A028242(n) + A110654(n). a(n) = A052938(n-2) + A084964(n-2) for n > 1. - Reinhard Zumkeller, Aug 27 2005 G.f.: (1 + x + x^2 + x^3)/(1 - x^2)^2. - Paul Barry, Oct 14 2005 a(n) = n + (1 + (-1)^n)/2. - Paolo P. Lava, May 08 2007 a(n) = 2*a(n-2) - a(n-4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 3. - Philippe Deléham, Nov 03 2008 a(n) = A001477(n) + A059841(n). - Philippe Deléham, Mar 31 2009 a(n) = 2*n - a(n-1), with a(0) = 1. - Vincenzo Librandi, Nov 13 2010 a(n) = R(n, -2), where R(n, x) is the n-th row polynomial of A211955. a(n) = (-1)^n + 2*Sum_{k = 1..n} (-1)^(n - k - 2)*4^(k-1)*binomial(n+k, 2*k). Cf. A084159. - Peter Bala, May 01 2012 a(n) = A182579(n+1, n). - Reinhard Zumkeller, May 06 2012 G.f.: ( 1 + x^2 ) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Jul 12 2016 E.g.f.: x*exp(x) + cosh(x). - Ilya Gutkovskiy, Jul 12 2016 From Guenther Schrack, Sep 10 2018: (Start) a(-n) = -a(n-1). a(n) = A047270(n+1) - (2*n + 2). a(n) = A005408(A004526(n)). (End) EXAMPLE G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ... Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - Wolfdieter Lang, Feb 19 2020 MAPLE A109613:=n->2*floor(n/2)+1; seq(A109613(k), k=0..100); # Wesley Ivan Hurt, Oct 22 2013 MATHEMATICA Flatten@ Array[{2# - 1, 2# - 1} &, 37] (* Robert G. Wilson v, Jul 07 2012 *) (# - Boole[EvenQ[#]] &) /@ Range[80] (* Alonso del Arte, Sep 11 2019 *) With[{c=2*Range[0, 40]+1}, Riffle[c, c]] (* Harvey P. Dale, Jan 02 2020 *) PROG (Haskell) a109613 = (+ 1) . (* 2) . (`div` 2) a109613_list = 1 : 1 : map (+ 2) a109613_list -- Reinhard Zumkeller, Oct 27 2012, Feb 21 2011 (PARI) A109613(n)=n>>1<<1+1 \\ Charles R Greathouse IV, Feb 24 2011 (Sage) def a(n) : return( len( CuspForms( Gamma0( 5), 2*n + 4, prec=1). basis())); # Michael Somos, May 29 2013 (Scala) ((1 to 49) by 2) flatMap { List.fill(2)(_) } // Alonso del Arte, Sep 11 2019 CROSSREFS Cf. A063196, A110660, A186421, A186422, A211955, A230584, A290988. Complement of A052928 with respect to the universe A004526. - Guenther Schrack, Aug 21 2018 First differences of A000982, A061925, A074148, A105343, A116940, and A179207. - Guenther Schrack, Aug 21 2018 Sequence in context: A296063 A127630 A267458 * A063196 A351744 A339110 Adjacent sequences: A109610 A109611 A109612 * A109614 A109615 A109616 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Aug 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 20:01 EST 2022. Contains 358362 sequences. (Running on oeis4.)