login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008819
Expansion of (1+2*x^5+x^8)/((1-x^2)^2*(1-x^8)).
4
1, 0, 2, 0, 3, 2, 4, 4, 7, 6, 10, 8, 13, 12, 16, 16, 21, 20, 26, 24, 31, 30, 36, 36, 43, 42, 50, 48, 57, 56, 64, 64, 73, 72, 82, 80, 91, 90, 100, 100, 111, 110, 122, 120, 133, 132, 144, 144, 157, 156, 170, 168, 183, 182, 196, 196, 211, 210, 226, 224, 241, 240
OFFSET
0,3
LINKS
FORMULA
a(0)=1, a(1)=0, a(2)=2, a(3)=0, a(4)=3, a(5)=2, a(6)=4, a(7)=4, a(8)=7, a(9)=6, a(10)=10, a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-8) - a(n-9) - a(n-10) + a(n-11). - Harvey P. Dale, Oct 28 2015
MAPLE
seq(coeff(series((1+2*x^5+x^8)/((1-x^2)^2*(1-x^8)), x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 12 2019
MATHEMATICA
CoefficientList[Series[(1+2x^5+x^8)/(1-x^2)^2/(1-x^8), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 1, -1, 0, 0, 0, 0, 1, -1, -1, 1}, {1, 0, 2, 0, 3, 2, 4, 4, 7, 6, 10}, 60] (* Harvey P. Dale, Oct 28 2015 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+2*x^5+x^8)/((1-x^2)^2*(1-x^8))) \\ G. C. Greubel, Sep 12 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+2*x^5+x^8)/((1-x^2)^2*(1-x^8)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008819_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+2*x^5+x^8)/((1-x^2)^2*(1-x^8))).list()
A008819_list(60) # G. C. Greubel, Sep 12 2019
(GAP) a:=[1, 0, 2, 0, 3, 2, 4, 4, 7, 6, 10];; for n in [12..60] do a[n]:=a[n-1] +a[n-2]-a[n-3]+a[n-8]-a[n-9]-a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 12 2019
CROSSREFS
Cf. Expansions of the form (1 +2*x^(2*m+1) +x^(4*m))/((1-x^2)^2*(1-x^(4*m))): A008818 (m=1), this sequence (m=2), A008820 (m=3), A008821 (m=4).
Sequence in context: A291273 A008807 A263149 * A374018 A279591 A279675
KEYWORD
nonn
STATUS
approved