OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
FORMULA
G.f.: (1+x^9)/((1-x)^2*(1-x^9)). - G. C. Greubel, Sep 12 2019
MAPLE
seq(coeff(series((1+x^9)/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
MATHEMATICA
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15}, 70] (* or *) CoefficientList[Series[(1+x^9)/((1-x)^2*(1-x^9)), {x, 0, 70}], x] (* G. C. Greubel, Sep 12 2019 *)
PROG
(PARI) my(x='x+O('x^70)); Vec((1+x^9)/((1-x)^2*(1-x^9))) \\ G. C. Greubel, Sep 12 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^9)/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008815_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^8)/((1-x)^2*(1-x^8))).list()
A008815_list(70) # G. C. Greubel, Sep 12 2019
(GAP) a:=[1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15];; for n in [12..70] do a[n]:=2*a[n-1] -a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms added by G. C. Greubel, Sep 12 2019
STATUS
approved