|
|
A334929
|
|
Positive integers k such that there exists a positive integer m consisting of k identical digits and such that m is a multiple of k.
|
|
0
|
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 22, 24, 27, 36, 42, 44, 45, 54, 63, 66, 72, 78, 81, 84, 88, 108, 111, 126, 132, 135, 156, 162, 168, 189, 198, 205, 216, 222, 234, 242, 243, 252, 264, 294, 312, 324, 333, 342, 378, 396, 404, 405, 444, 462, 465, 468, 484, 486
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For k=3^t, t>=1 you can always find numbers m.
|
|
LINKS
|
|
|
EXAMPLE
|
12 is a term since 444444444444 = 12*37037037037.
|
|
MATHEMATICA
|
ok[n_] := AnyTrue[(10^n - 1)/9 Range@9, Mod[#, n] == 0 &]; Select[ Range[486], ok] (* Giovanni Resta, May 24 2020 *)
|
|
PROG
|
(Python)
t = "1"
list = [1]
for i in range(1, 1000):
t = "1" + t
m = int(t)
weiter = 0
for k in range(1, 10):
if k * m % (i + 1) == 0:
weiter = 1
if weiter == 1:
list.append(i + 1)
print(list)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|