OFFSET
1,2
COMMENTS
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..2215
Michael De Vlieger, Diagram montage of XOR-triangles resulting from a(n) with 2 <= n <= 33.
Michael De Vlieger, Central zero-triangles in rotationally symmetrical XOR-Triangles, 2020.
FORMULA
G.f.: (1 + 11*x + 4*x^2 - 8*x^3)/(1 - 9*x^2 + 8*x^4).
a(n) = - (4/7) - (1/7)*(-1)^(n-1) + ((6 + 10*sqrt(2))/7)*(2*sqrt(2))^(n-1) + ((6 - 10*sqrt(2))/7)*(-2*sqrt(2))^(n-1) - Alejandro J. Becerra Jr., May 31 2020
EXAMPLE
Diagrams of a(2)-a(5), replacing “0” with “.” and “1” with “@” for clarity:
a(2)=11 a(3)=13
@ . @ @ @ @ . @
@ @ . . @ @
. @ @ .
@ @
.
a(4) = 91 a(5) = 109
@ . @ @ . @ @ @ @ . @ @ . @
@ @ . @ @ . . @ @ . @ @
. @ @ . @ @ . @ @ .
@ . @ @ @ @ . @
@ @ . . @ @
. @ @ .
@ @
MATHEMATICA
CoefficientList[Series[(1 + 11 x + 4 x^2 - 8 x^3)/(1 - 9 x^2 + 8 x^4), {x, 0, 28}], x]
(* Generate a textual plot of XOR-triangle T(n) *)
xortri[n_Integer] := TableForm@ MapIndexed[StringJoin[ConstantArray[" ", First@ #2 - 1], StringJoin @@ Riffle[Map[If[# == 0, "." (*0*), "@" (*1*)] &, #1], " "]] &, NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, May 16 2020
STATUS
approved